
Semantics and Optimization of the SPARQL 1.1
Federation Extension

Carlos Buil-Aranda1, Marcelo Arenas2 and Oscar Corcho1

1 Ontology Engineering Group, Facultad de Informática, UPM, Spain
2 Department of Computer Science, PUC Chile

Abstract The W3C SPARQL working group is defining the new SPARQL 1.1
query language. The current working draft of SPARQL 1.1 focuses mainly on the
description of the language. In this paper, we provide a formalization of the syntax
and semantics of the SPARQL 1.1 federation extension, an important fragment of
the language that has not yet received much attention. Besides, we propose opti-
mization techniques for this fragment, provide an implementation of the fragment
including these techniques, and carry out a series of experiments that show that
our optimization procedures could significantly speed up the query evaluation
process.

1 Introduction

The recent years have witnessed a large and constant growth in the amount of RDF
data available on the Web, exposed by means of Linked Data-enabled URLs and by
SPARQL endpoints. Several non-exhaustive, and sometimes out-of-date or not contin-
uously maintained, lists of SPARQL endpoints or data catalogs are available in differ-
ent formats (from wiki-based HTML pages to SPARQL endpointsusing data catalog
description vocabularies). Besides, most of these datasets are interlinked, what allows
navigating through them and facilitates building complex queries combining data from
heterogeneous datasets.

These SPARQL endpoints accept queries written in SPARQL andadhere to the
SPARQL protocol, as defined by the W3C recommendation. However, the current
SPARQL recommendation has an important limitation in defining and executing queries
that span across distributed datasets, since it only considers the possibility of executing
these queries in isolated SPARQL endpoints. Hence users willing to federate queries
across a number of SPARQL endpoints have been forced to create ad-hoc extensions
of the query language or to include additional information about data sources in the
configuration of their SPARQL endpoint servers [14,15]. This has led to the inclusion
of query federation extensions in the current SPARQL 1.1 working draft [12] (together
with other extensions that are out of the scope of this paper), which are studied in detail
in order to generate a new W3C recommendation in the coming months.

The federation extension of SPARQL 1.1 includes two new operators in the query
language: SERVICE and BINDINGS. The former allows specifying, inside a SPARQL
query, the SPARQL query service in which a portion of the query will be executed. This
query service may be known at the time of building the query, and hence the SERVICE

operator will already specify the IRI of the SPARQL endpointwhere it will be executed;
or may be retrieved at query execution time after executing an initial SPARQL query
fragment in one of the aforementioned RDF-enabled data catalogs, so that potential
SPARQL endpoints that can answer the rest of the query can be obtained and used. The
latter (BINDINGS) allows transferring results that are used to constrain a query, and
which will normally come from previous executions of other queries or from constraints
specified in user interfaces that then transform these into SPARQL queries.

Till now, most of the work done on federation extensions in the context of the W3C
working group has been focused on the description of the language grammar. In this
paper we complement this work with the formalization of the syntax and semantics of
these federation extensions of SPARQL 1.1, and with the definition of the constraints
that have to be considered in their use (which is currently not too restricted) in order to
be able to provide pragmatic implementations of query evaluators. As an extreme exam-
ple of bad performance, we may imagine a query that uses the SERVICE operator with
a free variable to specify the SPARQL endpoint where the restof the query has to be
evaluated. We may imagine that a naı̈ve implementation may need to go through all ex-
isting SPARQL endpoints on the Web evaluating that query fragment before providing
a result, something that can be considered infeasible in practical terms. For our purpose,
we define the notions of service-boundedness and service-safeness, which ensure that
the SERVICE operator can be safely evaluated.

Besides, we implement the optimizations proposed in [11], using the notion of well-
designed patterns, which prove to be effective in the optimization of queries that contain
the OPTIONAL operator, the most costly operator in SPARQL [11,17]. This has also
important implications in the number of tuples being transferred and joined in federated
queries, and hence our implementation benefits from this.

As a result of our work, we have not only formalized these notions, but we have
also implemented a system that supports the current SPARQL 1.1 federation exten-
sions and makes use of these optimizations. This system, SPARQL-DQP (which stands
for SPARQL Distributed Query Processing), is built on top ofthe OGSA-DAI and
OGSA-DQP infrastructure [3,10], what provides additionalrobustness to deal with
large amounts of data in distributed settings, supporting for example an indirect ac-
cess mode that is normally used in the development of data-intensive workflows. We
have evaluated our system using a small benchmark of real SPARQL 1.1 queries from
the bioinformatics domain, and compared it with other similar systems, in some cases
adapting the queries to their own ad-hoc SPARQL extensions,so that the benefits of our
implementation can be illustrated.

With this work, we aim at advancing to the current state of theart hoping to include
it in the next versions of the SPARQL working drafts, and providing SPARQL-DQP as
one of the reference implementations of this part of the recommendation. We also hope
that the initial benchmark that we have defined can be extended and stabilized in order
to provide a good evaluation framework, complementing existing benchmarks.

Organization of the paper. In Section 2, we describe the syntax and semantics
of the SPARQL 1.1 federation extension. In Section 3, we introduce the notions of
service-safeness, which ensures that the SERVICE operatorcan be safely evaluated. In
Section 4, we present some optimization techniques for the evaluation of the SPARQL

1.1 federation extension. Finally, in Section 5, we presentour implementation as well
as an experimental evaluation of it.

2 Syntax and Semantics of the SPARQL 1.1 Federation Extension

In this section, we give an algebraic formalization of the SPARQL 1.1 federation ex-
tension over simple RDF, that is, RDF without RDFS vocabulary and literal rules. Our
starting point is the existing formalization of SPARQL described in [11], to which we
add the operatorsSERVICE andBINDINGS proposed in [12].

We introduce first the necessary notions about RDF (taken mainly from [11]). As-
sume there are pairwise disjoint infinite setsI, B, andL (IRIs [6], Blank nodes, and
Literals, respectively). Then a triple(s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) is called
anRDF triple. In this tuple,s is thesubject, p thepredicateando theobject. An RDF
graph is a set of RDF triples. Moreover, assume the existence of an infinite setV of
variables disjoint from the above sets, and leaveUNBOUND to be a reserve word that
does not belong to any of the sets mentioned previously.

2.1 Syntax of the federation extension

The official syntax of SPARQL [13] considers operatorsOPTIONAL, UNION,
FILTER, SELECT and concatenation via a point symbol (.), to construct graph pat-
tern expressions. OperatorsSERVICE andBINDINGS are introduced in the SPARQL
1.1 federation extension, the former for allowing users to direct a portion of a query
to a particular SPARQL endpoint, and the latter for transferring results that are used
to constrain a query. The syntax of the language also considers{ } to group patterns,
and some implicit rules of precedence and association. In order to avoid ambiguities
in the parsing, we follow the approach proposed in [11], and we first present the syn-
tax of SPARQL graph patterns in a more traditional algebraicformalism, using op-
eratorsAND (.), UNION (UNION), OPT (OPTIONAL), FILTER (FILTER) and
SERVICE (SERVICE), then we introduce the syntax of BINDINGS queries, which
use theBINDINGS operator (BINDINGS), and we conclude by defining the syntax
of SELECT queries, which use theSELECT operator (SELECT). More precisely, a
SPARQL graph pattern expression is defined recursively as follows:

(1) A tuple from(I ∪ L ∪ V) × (I ∪ V) × (I ∪ L ∪ V) is a graph pattern (a triple
pattern).

(2) If P1 andP2 are graph patterns, then expressions(P1 AND P2), (P1 OPT P2),
and(P1 UNION P2) are graph patterns.

(3) If P is a graph pattern andR is aSPARQL built-in condition, then the expression
(P FILTER R) is a graph pattern.

(4) If P is a graph pattern anda ∈ (I ∪ V), then(SERVICE a P) is a graph pattern.

Moreover, a SPARQL BINDINGS query is defined as follows:

(5) If P is a graph pattern,S is a nonempty list of pairwise distinct variables and
{A1, . . . , An} is a nonempty set of lists such that for everyi ∈ {1, . . . , n}, it holds
thatAi andS have the same length and each element inAi belongs to(I ∪ L ∪
{UNBOUND}), then(P BINDINGS S {A1, . . . , An}) is a BINDINGS query.

Finally, assuming thatP is either a graph pattern or a BINDINGS query, letvar(P) be
the set of variables mentioned inP . Then a SPARQL SELECT query is defined as:

(6) If P is either a graph pattern or a BINDINGS query, andW is a set of variables
such thatW ⊆ var(P), then(SELECT W P) is a SELECT query.

It is important to notice that the rules (1)–(3) above were introduced in [11], while we
formalize in the rules (4)–(6) the federation extension of SPARQL proposed in [12].

In the previous definition, we use the notion of built-in condition for the filter oper-
ator. A SPARQL built-in condition is constructed using elements of the set(I ∪L∪ V)
and constants, logical connectives (¬, ∧, ∨), inequality symbols (<, ≤, ≥, >), the
equality symbol (=), unary predicates likebound, isBlank, andisIRI, plus other fea-
tures (see [13] for a complete list). Due to the lack of space,we restrict in this paper
to the fragment of SPARQL where the built-in condition is a Boolean combination of
terms constructed by using= andbound, that is: (1) if?X, ?Y ∈ V andc ∈ (I ∪ L),
thenbound(?X), ?X = c and?X =?Y are built-in conditions, and (2) ifR1 andR2

are built-in conditions, then(¬R1), (R1 ∨ R2) and(R1 ∧ R2) are built-in conditions.
It should be noticed that the results of the paper can be easily extended to the other
built-in predicates in SPARQL.

Let P be either a graph pattern or a BINDINGS query or a SELECT query. In the
rest of the paper, we usevar(P) to denote the set of variables occurring inP . Similarly,
for a built-in conditionR, we usevar(R) to denote the set of variables occurring inR.

2.2 Semantics of the federation extension

To define the semantics of SPARQL queries, we need to introduce some extra ter-
minology from [11]. A mappingµ from V to (I ∪ B ∪ L) is a partial function
µ : V → (I ∪ B ∪ L). Abusing notation, for a triple patternt we denote byµ(t) the
triple obtained by replacing the variables int according toµ. The domain ofµ, denoted
by dom(µ), is the subset ofV whereµ is defined. Two mappingsµ1 andµ2 are com-
patible when for all?X ∈ dom(µ1) ∩ dom(µ2), it is the case thatµ1(?X) = µ2(?X),
i.e. whenµ1 ∪ µ2 is also a mapping.

Let Ω1 andΩ2 be sets of mappings. Then the join of, the union of, the difference
between and the left outer-join betweenΩ1 andΩ2 are defined as follows [11]:

Ω1 ⋊⋉ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 andµ1, µ2 are compatible mappings},

Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2},

Ω1 r Ω2 = {µ ∈ Ω1 | for all µ′ ∈ Ω2, µ andµ′ are not compatible},

Ω1 Ω2 = (Ω1 ⋊⋉ Ω2) ∪ (Ω1 r Ω2).

Next we use the preceding operators to give semantics to graph pattern expressions,
BINDINGS queries and SELECT queries. More specifically, we define this semantics
as a functionJ · KG, which takes as input any of these types of queries and returns a
set of mappings. In this definition, we assume given a partialfunction ep from the set
I of IRIs such that for everyc ∈ I, if ep(c) is defined, then ep(c) is an RDF graph.
Intuitively, function ep is defined for an elementc ∈ I (c ∈ dom(ep)) if and only if c

is the IRI of a SPARQL endpoint, and ep(c) is the default RDF graph of that endpoint3.
Moreover, in this definitionµ∅ represents the mapping with empty domain (which is
compatible with any other mapping).

The evaluation of a graph patternP over an RDF graphG, denoted byJP KG, is de-
fined recursively as follows (due to the lack of space, we refer the reader to the extended
version of the paper for the definition of the semantics of theFILTER operator):

(1) If P is a triple patternt, thenJP KG = {µ | dom(µ) = var(t) andµ(t) ∈ G}.
(2) If P is (P1 AND P2), thenJP KG = JP1KG ⋊⋉ JP2KG.
(3) If P is (P1 OPT P2), thenJP KG = JP1KG JP2KG.
(4) If P is (P1 UNION P2), thenJP KG = JP1KG ∪ JP2KG.
(5) If P is (SERVICE c P1) with c ∈ I, then

JP KG =

{

JP1Kep(c) if c ∈ dom(ep)

{µ∅} otherwise

(6) If P is (SERVICE ?X P1) with ?X ∈ V , thenJP KG is equal to:

[

c∈I

µ | there existsµ′ ∈ J(SERVICE c P1)KG s.t. dom(µ) = (dom(µ′) ∪ {?X}),

µ(?X) = c andµ(?Y) = µ
′(?Y) for every?Y ∈ dom(µ′)

ff

Moreover, the semantics of BINDINGS queries is defined as follows. Given a listS =
[?X1, . . . , ?Xℓ] of pairwise distinct variables, whereℓ ≥ 1, and a listA = [a1, . . . , aℓ]
of values from(I ∪ L ∪ {UNBOUND}), let µS,A be a mapping with domain{?Xi |
i ∈ {1, . . . , ℓ} andai ∈ (I ∪ L)} and such thatµS,A(?Xi) = ai for every?Xi ∈
dom(µS,A). Then

(7) If P = (P1 BINDINGS S {A1, . . . , An}) is a BINDINGS query:

JP KG = JP1KG ⋊⋉ {µS,A1
, . . . , µS,An

}.

Finally, the semantics of SELECT queries is defined as follows. Given a mappingµ :
V → (I ∪ B ∪ L) and a set of variablesW ⊆ V , the restriction ofµ to W , denoted by
µ|W , is a mapping such thatdom(µ|W) = (dom(µ) ∩ W) andµ|W (?X) = µ(?X) for
every?X ∈ (dom(µ) ∩ W). Then

(8) If P = (SELECT W P1) is a SELECT query:JP KG = {µ|W | µ ∈ JP1KG}.

It is important to notice that the rules (1)–(4) above were introduced in [11], while we
propose in the rules (5)–(8) a semantics for the operatorsSERVICE andBINDINGS
introduced in [12]. Intuitively, ifc ∈ I is the IRI of a SPARQL endpoint, then the idea
behind the definition of(SERVICE c P1) is to evaluate queryP1 in the SPARQL end-
point specified byc. On the other hand, ifc ∈ I is not the IRI of a SPARQL endpoint,

3 For simplicity, we only assume a single (default) graph and no named graphs per remote
SPARQL endpoint.

then(SERVICE c P1) leaves unbounded all the variables inP1, as this query cannot
be evaluated in this case. This idea is formalized by makingµ∅ the only mapping in the
evaluation of(SERVICE c P1) if c 6∈ dom(ep). In the same way,(SERVICE ?X P1)
is defined by considering all the possible IRIs for the variable ?X , that is, all the val-
uesc ∈ I. In fact,(SERVICE ?X P1) is defined as the union of the evaluation of the
graph patterns(SERVICE c P1) for the valuesc ∈ I, but also storing in?X the IRIs
from where the values of the variables inP1 are coming from. Finally, the idea behind
the definition of(P1 BINDINGS S {A1, . . . , An}) is to constrain the values of the
variables inS to the values specified inA1, . . ., An.

Example 1.Assume that G is an RDF graph that uses triples of the form
(a, serviceaddress, b) to indicate that a SPARQL endpoint with namea is located at
the IRI b. Moreover, letP be the following SPARQL query:

»

SELECT {?X, ?N, ?E}

„„

(?X, serviceaddress, ?Y) AND (SERVICE ?Y (?N, email, ?E))

«

BINDINGS [?N] {[John], [Peter]}

«–

QueryP is used to compute the list of names and email addresses that can be retrieved
from the SPARQL endpoints stored in an RDF graph. In fact, ifµ ∈ JP KG, thenµ(?X)
is the name of a SPARQL endpoint stored inG, µ(?N) is the name of a person stored
in that SPARQL endpoint andµ(?E) is the email address of that person. Moreover,
the operatorBINDINGS in this query is used to filter the values of the variable?N .
Specifically, ifµ ∈ JP KG, thenµ(?N) is either John or Peter. ⊓⊔

The goal of the rules (5)–(8) is to define in an unambiguous waywhat the result of
evaluating an expression containing the operatorsSERVICE andBINDINGS should
be. As such, these rules should not be considered as an implementation of the language.
In fact, a direct implementation of the rule (6), that definesthe semantics of a pattern of
the form(SERVICE ?X P1), would involve evaluating a particular query in every pos-
sible SPARQL endpoint, which is obviously infeasible in practice. In the next section,
we face this issue and, in particular, we introduce a syntactic condition on SPARQL
queries that ensures that a pattern of the form(SERVICE ?X P1) can be evaluated by
only considering a finite set of SPARQL endpoints, whose IRIsare actually taken from
the RDF graph where the query is being evaluated.

3 On Evaluating theSERVICE Operator

As we pointed out in the previous section, the evaluation of apattern of the form
(SERVICE ?X P) is infeasible unless the variable?X is bound to a finite set of IRIs.
This notion ofboundednessis one of the most significant and unclear concepts in the
SPARQL federation extension. In fact, the current version of the specification [12] only
specifies that a variable?X in a pattern of the form(SERVICE ?X P) must be bound,

but without providing a formal definition of what that means.Here we provide a for-
malization of this concept, studying the complexity issuesassociated with it.

3.1 The notion of boundedness

In Example 1, we present a SPARQL query containing a pattern(SERVICE ?Y
(?N, email, ?E)). Given that variable?Y is used to store the address of a remote
SPARQL endpoint to be queried, it is important to assign a value to?Y prior to the eval-
uation of theSERVICE pattern. In the case of the query in Example 1, this needs of a
simple strategy: given an RDF graphG, first computeJ(?X, serviceaddress, ?Y)KG,
and then for everyµ in this set, computeJ(SERVICE a (?N, email, ?E))KG with
a = µ(?Y). More generally, SPARQL pattern(SERVICE ?Y (?N, email, ?E)) can
be evaluated in this case as only a finite set of values from thedomain ofG need to be
considered as the possible values of?Y . This idea naturally gives rise to the following
notion of boundedness for the variables of a SPARQL query. Inthe definition of this
notion,dom(G) refers to the domain ofG, that is, the set of elements from(I ∪B ∪L)
that are mentioned inG, anddom(P) refers to the set of elements from(I ∪L) that are
mentioned inP .

Definition 1 (Boundedness).LetP be a SPARQL query and?X ∈ var(P). Then?X
is bound inP if one of the following conditions holds:

– P is either a graph pattern or a BINDINGS query, and for every RDF graph G

and mappingµ ∈ JP KG, it holds that?X ∈ dom(µ) andµ(?X) ∈ (dom(G) ∪
dom(P)).

– P is a SELECT query(SELECT W P1) and?X is bound inP1.

TheBINDINGS operator can make a variable?X in a queryP to be bound by assign-
ing to it a fixed set of values. Given that these values are not necessarily mentioned in
the RDF graphG whereP is being evaluated, the previous definition first imposes the
condition that?X ∈ dom(µ), and then not only considers the caseµ(?X) ∈ dom(G)
but also the caseµ(?X) ∈ dom(P). As an example of the above definition, we note
that variable?Y is bound in the graph pattern

P1 = ((?X, serviceaddress, ?Y) AND (SERVICE ?Y (?N, email, ?E))),

as for every RDF graphG and mappingµ ∈ JP1KG, we know that?Y ∈ dom(µ)
and µ(?Y) ∈ dom(G). Moreover, we also have that variable?Y is bound in
(SELECT {?X, ?N, ?E} P1) as?Y is bound in graph patternP1.

A natural way to ensure that a SPARQL queryP can be evaluated in practice is by
imposing the restriction that for every sub-pattern(SERVICE ?X P1) of P , it holds
that?X is bound inP . However, in the following theorem we show that such a condition
is undecidable and, thus, a SPARQL query engine would not be able to check it in order
to ensure that a query can be evaluated.

Theorem 1. The problem of verifying, given a SPARQL queryP and a variable?X ∈
var(P), whether?X is bound inP is undecidable.

The fact that the notion of boundedness is undecidable prevents one from using it as
a restriction over the variables in SPARQL queries. To overcome this limitation, we
introduce here a syntactic condition that ensures that a variable is bound in a pattern
and that can be efficiently verified.

Definition 2 (Strong boundedness).Let P be a SPARQL query. Then the set of
strongly bound variables inP , denoted bySB(P), is recursively defined as follows:

– if P = t, wheret is a triple pattern, thenSB(P) = var(t);
– if P = (P1 AND P2), thenSB(P) = SB(P1) ∪ SB(P2);
– if P = (P1 UNION P2), thenSB(P) = SB(P1) ∩ SB(P2);
– if P = (P1 OPT P2) or P = (P1 FILTER R), thenSB(P) = SB(P1);
– if P = (SERVICE c P1), with c ∈ I, or P = (SERVICE ?X P1), with ?X ∈ V ,

thenSB(P) = ∅;
– if P = (P1 BINDINGS S {A1, . . . , An}), thenSB(P) = SB(P1) ∪ {?X |

?X is in S and for everyi ∈ {1, . . . , n}, it holds that?X ∈ dom(µS,Ai
)}.

– if P = (SELECT W P1), thenSB(P) = (W ∩ SB(P1)).

The previous definition recursively collects from a SPARQL query P a set of vari-
ables that are guaranteed to be bound inP . For example, ifP is a triple patternt, then
SB(P) = var(t) as one knows that for every variable?X ∈ var(t) and for every RDF
graphG, if µ ∈ JtKG, then?X ∈ dom(µ) andµ(?X) ∈ dom(G). In the same way,
if P = (P1 AND P2), thenSB(P) = SB(P1) ∪ SB(P2) as one knows that if?X
is bound inP1 or in P2, then?X is bound inP . As a final example, notice that if
P = (P1 BINDINGS S {A1, . . . , An}) and?X is a variable mentioned inS such
that?X ∈ dom(µS,Ai

) for everyi ∈ {1, . . . , n}, then?X ∈ SB(P). In this case, one
knows that?X is bound inP sinceJP KG = JP1KG ⋊⋉ {µS,A1

, . . . , µS,An
} and?X is in

the domain of each one of the mappingsµS,Ai
, which implies thatµ(?X) ∈ dom(P)

for everyµ ∈ JP KG. In the following proposition, we formally show that our intuition
aboutSB(P) is correct, in the sense that every variable in this set is bound inP .

Proposition 1. For every SPARQL queryP and variable?X ∈ var(P), if ?X ∈
SB(P), then?X is bound inP .

Given a SPARQL queryP and a variable?X ∈ var(P), it can be efficiently verified
whether?X is strongly bound inP . Thus, a natural and efficiently verifiable way to en-
sure that a SPARQL queryP can be evaluated in practice is by imposing the restriction
that for every sub-pattern(SERVICE ?X P1) of P , it holds that?X is strongly bound
in P . However, this notion still needs to be modified in order to beuseful in practice, as
shown by the following examples.

Example 2.Assume first thatP1 is the following graph pattern:

P1 = ((?X, servicedescription, ?Z) UNION

((?X, serviceaddress, ?Y) AND (SERVICE ?Y (?N, email, ?E)))).

That is, either?X and ?Z store the name of a SPARQL endpoint and a de-
scription of its functionalities, or?X and ?Y store the name of a SPARQL end-
point and the IRI where it is located (together with a list of names and email

addresses retrieved from that location). Variable?Y is neither bound nor strongly
bound in P1. However, there is a simple strategy that ensures thatP1 can be
evaluated over an RDF graphG: first computeJ(?X, servicedescription, ?Z)KG,
then computeJ(?X, serviceaddress, ?Y)KG, and finally for everyµ in the set
J(?X, serviceaddress, ?Y)KG, computeJ(SERVICE a (?N, email, ?E))KG with a =
µ(?Y). In fact, the reason whyP1 can be evaluated in this case is that?Y is
bound (and strongly bound) in the sub-pattern((?X, serviceaddress, ?Y) AND
(SERVICE ?Y (?N, email, ?E))) of P1.

As a second example, assume thatG is an RDF graph that uses triples of the form
(a1, relatedwith, a2) to indicate that the SPARQL endpoints located at the IRIsa1 and
a2 store related data. Moreover, assume thatP2 is the following graph pattern:

P2 = ((?U1, relatedwith, ?U2) AND

(SERVICE ?U1 ((?N, email, ?E) OPT (SERVICE ?U2 (?N, phone, ?F))))).

When this query is evaluated over the RDF graphG, it returns for every tuple
(a1, relatedwith, a2) in G, the list of names and email addresses that that can be re-
trieved from the SPARQL endpoint located ata1, together with the phone number for
each person in this list for which this data can be retrieved from the SPARQL endpoint
located ata2 (recall that graph pattern(SERVICE ?U2 (?N, phone, ?F)) is nested in-
side the first SERVICE operator inP2). To evaluate this query over an RDF graph, first
it is necessary to determine the possible values for variable?U1, and then to submit the
query((?N, email, ?E) OPT (SERVICE ?U2 (?N, phone, ?F))) to each one of the
endpoints located at the IRIs stored in?U1. In this case, variable?U2 is bound (and
also strongly bound) inP2. However, this variable is not bound in the graph pattern
((?N, email, ?E) OPT (SERVICE ?U2 (?N, phone, ?F))), which has to be evaluated
in some of the SPARQL endpoints stored in the RDF graph whereP2 is being evalu-
ated, something that is infeasible in practice. Notice thatthe difficulties in evaluatingP2

are caused by the nesting ofSERVICE operators (more precisely, by the fact thatP2

has a sub-pattern of the form(SERVICE ?X1 Q1), whereQ1 has in turn a sub-pattern
of the form(SERVICE ?X2 Q2) such that?X2 is bound inP2 but not inQ1). ⊓⊔

In the following section, we use the concept of strongly boundedness to define a notion
that ensures that a SPARQL query containing theSERVICE operator can be evaluated
in practice, and which takes into consideration the ideas presented in Example 2.

3.2 The notion of service-safeness: Considering sub-patterns and nested
SERVICE operators

The goal of this section is to provide a condition that ensures that a SPARQL query
containing theSERVICE operator can be safely evaluated . To this end, we first need
to introduce some terminology. Given a SPARQL queryP , defineT (P) as theparse
tree ofP . In this tree, every node corresponds to a sub-pattern ofP . An example of
a parse tree of a patternQ is shown in Figure 1. In this figure,u1, u2, u3, u4, u5, u6

are the identifiers of the nodes of the tree, which are labeledwith the sub-patterns of
Q. It is important to notice that in this tree we do not make any distinction between

u6 : (?Y, a, ?Z)

u1 : ((?Y, a, ?Z) UNION ((?X, b, c) AND (SERVICE ?X (?Y, a, ?Z))))

u2 : (?Y, a, ?Z) u3 : ((?X, b, c) AND (SERVICE ?X (?Y, a, ?Z)))

u4 : (?X, b, c) u5 : (SERVICE ?X (?Y, a, ?Z))

Figure 1. Parse treeT (Q) for the graph patternQ = ((?Y, a, ?Z) UNION ((?X, b, c) AND
(SERVICE ?X (?Y, a, ?Z)))).

the different operators in SPARQL, we just store the structure of the sub-patterns of a
SPARQL query.

TreeT (P) is used to define the notion of service-boundedness, which extends the
concept of boundedness, introduced in the previous section, to consider variables that
are bound inside sub-patterns and nestedSERVICE operators. It should be noticed that
these two features were identified in the previous section asimportant for the definition
of a notion of boundedness (see Example 2).

Definition 3 (Service-boundedness).A SPARQL queryP is service-bound if for every
nodeu of T (P) with label(SERVICE ?X P1), it holds that: (1) there exists a nodev
of T (P) with labelP2 such thatv is an ancestor ofu in T (P) and?X is bound inP2;
(2) P1 is service-bound.

For example, queryQ in Figure 1 is service-bound. In fact, condition (1) of Def-
inition 3 is satisfied asu5 is the only node inT (Q) having as label aSERVICE
graph pattern, in this case(SERVICE ?X (?Y, a, ?Z)), and for the nodeu3, it holds
that: u3 is an ancestor ofu5 in T (P), the label ofu3 is P = ((?X, b, c)AND
(SERVICE ?X (?Y, a, ?Z))) and?X is bound inP . Moreover, condition (2) of Defini-
tion 3 is satisfied as the sub-pattern(?Y, a, ?Z) of the label ofu5 is also service-bound.

The notion of service-boundedness captures our intuition about the condition that
a SPARQL query containing theSERVICE operator should satisfy. Unfortunately, the
following theorem shows that such a condition is undecidable and, thus, a query engine
would not be able to check it in order to ensure that a query canbe evaluated.

Theorem 2. The problem of verifying, given a SPARQL queryP , whetherP is service-
bound is undecidable.

As for the case of the notion of boundedness, the fact that thenotion of service-
boundedness is undecidable prevents one from using it as a restriction over the variables
used inSERVICE calls. To overcome this limitation, we replace the restriction that the
variables used inSERVICE calls are bound by the decidable restriction that they are
strongly bound. In this way, we obtain a syntactic conditionover SPARQL patterns that
ensures that they are service-bound, and which can be efficiently verified.

Definition 4 (Service-safeness).A SPARQL queryP is service-safe if for every node
u of T (P) with label (SERVICE ?X P1), it holds that: (1) there exists a nodev of

T (P) with labelP2 such thatv is an ancestor ofu in T (P) and?X ∈ SB(P2); (2) P1

is service-safe.

Proposition 2. If a SPARQL queryP is service-safe, thenP is service-bound.

The notion of service-safeness is used in our system to verify that a SPARQL pattern
can be evaluated in practice. We conclude this section by pointing out that it can be
efficiently verified whether a SPARQL queryP is service-safe, by using a bottom-up
approach over the parse treeT (P) of P .

4 Optimizing the Evaluation of the OPTIONAL Operator in
SPARQL Federated Queries

If a SPARQL queryQ including theSERVICE operator has to be evaluated in a
SPARQL endpointA, then some of the sub-queries ofQ may have to be evaluated
in some external SPARQL endpoints. Thus, the problem of optimizing the evaluation
of Q in A, and, in particular, the problem of reorderingQ in A to optimize this evalu-
ation, becomes particularly relevant in this scenario, as in some cases one cannot rely
on the optimizers of the external SPARQL endpoints. Motivating by this, we present in
this section some optimization techniques that extend the techniques presented in [11]
to the case of SPARQL queries using theSERVICE operator, and which can be applied
to a considerable number of SPARQL federated queries.

4.1 Optimization via well-designed patterns

In [11,17], the authors study the complexity of evaluating the fragment of SPARQL
consisting of the operatorsAND, UNION, OPT andFILTER. One of the conclusions
of these papers is that the main source of complexity in SPARQL comes from the use
of the OPT operator. In light of these results, it was introduced in [11] a fragment
of SPARQL that forbids a special form of interaction betweenvariables appearing in
optional parts, which rarely occurs in practice. The patterns in this fragment, which are
called well-designed patterns [11], can be evaluated more efficiently and are suitable for
reordering and optimization. In this section, we extend thedefinition of the notion of
being well-designed to the case of SPARQL patterns using theSERVICE operator, and
prove that the reordering rules proposed in [11], for optimizing the evaluation of well-
designed patterns, also hold in this extension. The use of these rules allows to reduce
the number of tuples being transferred and joined in federated queries, and hence our
implementation benefits from this as shown in Section 5.

Let P be a graph pattern constructed by using the operatorsAND, OPT, FILTER
andSERVICE, and assume thatP satisfies the safety condition that for every sub-
pattern(P1 FILTER R) of P , it holds thatvar(R) ⊆ var(P1). Then, by following [11],
we say thatP is well-designed if for every sub-patternP ′ = (P1 OPT P2) of P and
for every variable?X occurring inP : If ?X occurs both insideP2 and outsideP ′,
then it also occurs inP1. All the graph patterns given in the previous sections are well-
designed. On the other hand, the following patternP is not well-designed:

((?X, nickname, ?Y) AND (SERVICE c ((?X, email, ?U) OPT (?Y, email, ?V)))),

as for the sub-patternP ′ = (P1 OPT P2) of P with P1 = (?X, email, ?U) and
P2 = (?Y, email, ?V)), we have that?Y occurs inP2 and outsideP ′ in the triple
pattern(?X, nickname, ?Y), but it does not occur inP1. Given an RDF graphG,
graph patternP retrieves fromG a list of people with their nicknames, and retrieves
from the SPARQL endpoint located at the IRIc the email addresses of these people
and, optionally, the email addresses associated to their nicknames. What is unnatu-
ral about this graph pattern is the fact that(?Y, email, ?V) is giving optional infor-
mation for (?X, nickname, ?Y), but in P appears as giving optional information for
(?X, name, ?U). In fact, it could happen that some of the results retrieved by using the
triple pattern(?X, nickname, ?Y) are not included in the final answer ofP , as the value
of variable?Y in these intermediate results could be incompatible with the values for
this variable retrieved by using the triple pattern(?Y, email, ?V).

In the following proposition, we show that well-designed patterns including the
SERVICE operator are suitable for reordering and, thus, for optimization.

Proposition 3. LetP be a well-designed pattern andP ′ a pattern obtained fromP by
using one of the following reordering rules:

((P1 OPT P2) FILTER R) −→ ((P1 FILTER R) OPT P2),

(P1 AND (P2 OPT P3)) −→ ((P1 AND P2) OPT P3),

((P1 OPT P2) AND P3) −→ ((P1 AND P3) OPT P2).

ThenP ′ is a well-designed pattern equivalent toP .

The proof of this proposition is a simple extension of the proof of Proposition 4.10
in [11]. In the following section, we show that the use of these rules can have a consid-
erable impact in the cost of evaluating graph patterns.

5 Implementation of SPARQL-DQP and well-designed patterns
optimization

In this section, we describe how we implemented and evaluated the optimization tech-
niques presented in the previous section. In particular, wedemonstrate that they effec-
tively decrease the processing time of SPARQL 1.1 federatedqueries.

5.1 Implementation: SPARQL-DQP

We have implemented the rewriting rules described in Section 4.1 in SPARQL-DQP
[5], together with a bottom up algorithm for checking the condition of being well-
designed. SPARQL-DQP is a query evaluation system built on top of OGSA-DAI [3]
and OGSA-DQP [10]. OGSA-DAI is a generic service-based dataaccess, integration,
transformation and delivery framework that allows executing data-centric workflows
involving heterogeneous data resources. OGSA-DAI is integrated in Apache Tomcat
and within the Globus Toolkit, and is used in OMII-UK, the UK e-Science platform.
OGSA-DQP is the Distributed Query Processing extension of OGSA-DAI, which ac-
cess distributed OGSA-DAI data resources and provides parallelization mechanisms.

SPARQL-DQP [5] extends this framework with new SPARQL parsers, logical query
plan builders, operators and optimizers for distributed query processing. The main rea-
son for selecting this framework is that it provides built-in infrastructure to support DQP
and enables handling large datasets and tuple streams, which may result from the exe-
cution of queries in different query services and data sources. The low level technical
details of our implementation can be found in [5].

5.2 Evaluation

In our evaluation, we compare the results and performance ofour system with
other similar systems that provide some support for SPARQL query federation. Cur-
rently, the engines supporting the official SPARQL 1.1 federation extension are:
DARQ [14], Networked Graphs [15] and ARQ, which is availablevia an on-
line web service (http://www.sparql.org/) as well as a library for Jena
(http://jena.sourceforge.net/). Other system that supports distributed
RDF querying is presented in [18]. We do not consider this system here as it uses the
query language SeRQL instead of SPARQL.

The objective of our evaluation is to show first that we can handle SPARQL queries
that comply with the federated extension, and second that the optimization techniques
proposed in Section 4.1 actually reduce the time needed to process queries. We have
checked for existing SPARQL benchmarks like the Berlin SPARQL Benchmark [4],
SP2Bench [16] and the benchmark proposed in [7]. Unfortunatelyfor our purposes, the
first two are not designed for a distributed environment, while the third one is based
on a federated scenario but is not as comprehensive as the Berlin SPARQL Benchmark
and SP2Bench. Thus, we decided to base our evaluation on some queries from the life
sciences domain, similar to those in [7] but using a base query and increasing its com-
plexity like in [4]. These queries are real queries used by Bio2RDF experts.

Datasets description.The Bio2RDF datasets contains 2,3 billion triples organized
around 40 datasets with sometimes overlapping information. The Bio2RDF datasets
that we have used in our benchmark are: Entrez Gene (13 million triples, stored in the
local endpoint sparql-pubmed), Pubmed (797 million triples), HHPID (244,021 triples)
and MeSH (689,542 triples, stored in the local endpoint sparql-mesh). One of the prac-
tical problems that these benchmarks have is that public SPARQL endpoints normally
restrict the amount of results that they provide. To overcome this limitation we installed
Entrez Gene and MeSH in servers without these restrictions.We also divided them in
files of 300,000 triples, creating endpoints for each one of them.

Queries used in the evaluation.We used 7 queries in our evaluation. The query struc-
ture follows the following path: using the Pubmed references obtained from the Entrez
gene dataset, we access the Pubmed endpoint (queries Q1 and Q2). In these queries,
we retrieve information about genes and their references inthe Pubmed dataset. From
Pubmed we access the information in the National Library of Medicine’s controlled
vocabulary thesaurus (queries Q3 and Q4), stored at MeSH endpoint, so we have more
complete information about such genes. Finally, to increase the data retrieved by our
queries we also access the HHPID endpoint (queries Q5, Q6 andQ7), which is the
knowledge base for the HIV-1 protein. The queries, in increasing order of complexity,

can be found athttp://www.oeg-upm.net/files/sparql-dqp/. Next we
show query Q4 to give the reader an idea of the type of queries that we are considering:

SELECT ?pubmed ?gene1 ?mesh ?descriptor ?meshReference
WHERE
{

{SERVICE <http://127.0.0.1:2020/sparql-pubmed> {
?gene1 <http://bio2rdf.org/geneid_resource:pubmed_xref> ?pubmed .}}.

{SERVICE <http://pubmed.bio2rdf.org/sparql> {
?pubmed <http://bio2rdf.org/pubmed_resource:meshref> ?mesh .
?mesh <http://bio2rdf.org/pubmed_resource:descriptor> ?descriptor .}}.

OPTIONAL { SERVICE <http://127.0.0.1:2021/sparql-mesh> {
?meshReference <http://www.w3.org/2002/07/owl#sameAs> ?descriptor .}}.

}

Results. Our evaluation was done in an Amazon EC2 instance. The instance has 2
cores and 7.5 GB of memory run by Ubuntu 10.04. The data used inthis evaluation,
together with the generated query plans and the original queries in Java formatting, can
be found athttp://www.oeg-upm.net/files/sparql-dqp/. The results of
our evaluation are shown in the following table:

Query Not optimized Optimized DARQ NetworkedGraphs ARQ

SPARQL-DQP SPARQL-DQP

Q1 79,000ms. 79,000ms. 10+ min. 10+ min. 440,296ms.

Q2 64,179ms. 64,179ms. 10+ min. 10+ min. 10+ min.

Q3 134,324ms. 134,324ms. 10+ min. 10+ min. 10+ min.

Q4 152,559ms. 136,482ms. 10+ min. 10+ min. 10+ min.

Q5 146,575ms. 146,575ms. 10+ min. 10+ min. 10+ min.

Q6 322,792ms. 79,178ms. 10+ min. 10+ min. 10+ min.

Q7 350,554ms. 83,153ms. 10+ min. 10+ min. 10+ min.

A first clear advantage of our implementation is the ability to use asynchronous calls
facilitated by the use of indirect access mode, what means that we do not get time out
in any of the queries. This time out happens when accessing anonline distributed query
processing like in the case of ARQ (www.sparql.org/query). It is important to
note that the ability to handle this type of queries is essential for many types of data-
intensive applications, such as those based on Bio2RDF. Data transfer also plays a key
role in query response times. For example, in some queries the local query engine re-
ceived 150,000 results from Entrez gene, 10,000 results from Pubmed, 23,841 results
from MeSH and 10,000 results from HHPID. The implemented optimizations are less
noticeable when the amount of transferred data is fewer.

It is possible to observe three different sets of results from this preliminary evalua-
tion. The first set (Q1–Q3 and Q5) are those that are not optimized because the reorder-
ing rules in Section 4.1 are not applicable. The second querygroup (Q4) represents
the class of queries that can be optimized using our approach, but where the differ-
ence is not too relevant, because the less amount of transferred data. The last group
of queries (Q6–Q7) shows a clear optimization when using thewell-designed patterns
rewriting rules. For example, in query 6 the amount of transferred data varies from a
join of 150, 000 × 10, 000 tuples to a join of10, 000 × 23, 841 tuples (using Entrez,
Pubmed and MeSH endpoints), which highly reduces the globalprocessing time of the

query. Regarding the comparison with other systems, they donot properly handle these
amounts of data. We represent as 10+ min. those queries that need more than 10 minutes
to be answered.

In summary, we have shown that our implementation provides better results than
other similar systems. Besides, we have also shown that our implementation, which ben-
efits from an indirect access mode, can be more appropriate todeal with large datasets.

Acknowledgments. We thank the anonymous referees, the OGSA-DAI team (specially Ally
Hume), Marc-Alexandre Nolin, Jorge Pérez and Axel Polleres for their help with this work. This
research was supported by ADMIRE project FP7 ICT-215024 andFONDECYT grant 1090565.

References

1. S. Abiteboul, R. Hull and V. Vianu.Foundations of Databases. Addison-Wesley, 1995.
2. R. Angles and C. Gutierrez. The Expressive Power of SPARQL. In ISWC, pp. 114–129, 2008.
3. M. Antonioletti at al. OGSA-DAI 3.0 - The Whats and the Whys. In UK e-Science All Hands

Meeting, pp. 158–165, 2007.
4. C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. Int.J. Semantic Web Inf. Syst.

5(2):1–24, 2009.
5. C. Buil and O. Corcho. Federating Queries to RDF repositories. Technical Report, 2010,

http://oa.upm.es/3302/.
6. M. Durst and M. Suignard. Rfc 3987, Internationalized Resource Identifiers (IRIs).

http://www.ietf.org/rfc/rfc3987.txt.
7. P. Haase, T. Mathäß and M. Ziller. An evaluation of approaches to federated query processing

over linked data. In I-SEMANTICS, 2010.
8. S. Harris and A. Seaborne. SPARQL 1.1 Query. W3C Working Draft 1 June 2010,

http://www.w3.org/TR/sparql11-query/.
9. G. Klyne, J. J. Carroll and B. McBride. Resource description framework

(RDF): Concepts and abstract syntax. W3C Recommendation 10February 2004,
http://www.w3.org/TR/rdf-concepts/.

10. S. Lynden et al. The design and implementation of OGSA-DQP: A service-based distributed
query processor. Future Generation Computer Systems Volume 25(3):224–236, 2009.

11. J. Pérez, M. Arenas and C. Gutierrez. Semantics and complexity of SPARQL. TODS 34(3),
2009.

12. E. Prud’hommeaux. SPARQL 1.1 Federation Extensions. W3C Working Draft 1 June 2010,
http://www.w3.org/TR/sparql11-federated-query/.

13. E. Prud’hommeaux and A. Seaborne. SPARQL query languagefor RDF. W3C Recommen-
dation 15 January 2008,http://www.w3.org/TR/rdf-sparql-query/.

14. B. Quilitz and U. Leser. Querying distributed RDF data sources with SPARQL. In ESWC,
pp. 524–538, 2008.

15. S. Schenk and S. Staab. Networked graphs: a declarative mechanism for SPARQL rules,
SPARQL views and RDF data integration on the Web. In WWW, pp. 585–594, 2008.

16. M. Schmidt, T. Hornung, G. Lausen and C. Pinkel. SP2Bench: A SPARQL Performance
Benchmark. In ICDE, pp. 222–233, 2009.

17. M. Schmidt, M. Meier and G. Lausen. Foundations of SPARQLquery optimization. In
ICDT, pp. 4–33, 2010.

18. H. Stuckenschmidt, R. Vdovjak, H. Geert-Jan and J. Broekstra. Index structures and algo-
rithms for querying distributed RDF repositories. In WWW, pp. 631–639, 2004.

